Problems Curves and Geometry in Space

This material corresponds roughly to sections $12.5,13.1,13.2$ and 13.4 in the book, as well as the study guide "Curves and geometry"

Problem 1. [this problem will not be evaluated on the exam, only on the written homework © \cdot Let $\mathbf{r}(t)=a \cos t \mathbf{i}+b \sin t \mathbf{j}$ for $0 \leq t \leq 2 \pi$ parameterize the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
a) Compute the curvature $\kappa(t)$ of the curve.

We use the formula for the curvature

$$
\begin{equation*}
\kappa(t)=\frac{1}{v^{3}}|\mathbf{v}(t) \times \mathbf{a}(t)| \tag{1}
\end{equation*}
$$

So we need to compute first the velocity, acceleration and speed

$$
\begin{gather*}
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=-a \sin t \mathbf{i}+b \cos t \mathbf{j} \tag{2}\\
\mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=-a \cos t \mathbf{i}-b \sin t \mathbf{j} \tag{3}\\
v=\|\mathbf{v}(t)\|=\sqrt{(-a \sin t)^{2}+(b \cos t)^{2}}=\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} \tag{4}
\end{gather*}
$$

Now we compute the cross product of the velocity with the acceleration

$$
\begin{aligned}
& \mathbf{v}(t) \times \mathbf{a}(t) \\
= & (-a \sin t, b \cos t, 0) \times(-a \cos t,-b \sin t, 0) \\
= & \operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-a \sin t & b \cos t & 0 \\
-a \cos t & -b \sin t & 0
\end{array}\right) \\
= & \left(0,0, a b \sin ^{2} t+a b \cos ^{2} t\right) \\
= & \left(0,0, a b\left(\sin ^{2} t+\cos ^{2} t\right)\right) \\
= & (0,0, a b)
\end{aligned}
$$

This vector has norm

$$
\begin{equation*}
|\mathbf{v}(t) \times \mathbf{a}(t)|=\sqrt{0^{2}+0^{2}+(a b)^{2}}=a b \tag{5}
\end{equation*}
$$

Therefore, the curvature is

$$
\begin{equation*}
\kappa(t)=\frac{a b}{\left(\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right)^{3}}=a b\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{-3 / 2} \tag{6}
\end{equation*}
$$

b) Suppose that $a>b$. When is the curvature maximal? Try to think geometrically why this must be the case.

We find where $\frac{d \kappa}{d t}=0$,

$$
\begin{aligned}
& \frac{d \kappa}{d t} \\
= & -\frac{3}{2} a b\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{-5 / 2} \frac{d}{d t}\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right) \\
= & -\frac{3}{2} a b\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{-5 / 2}\left(2 a^{2} \sin t \cos t-2 b^{2} \cos t \sin t\right) \\
= & -\frac{3 a b\left(a^{2}-b^{2}\right) \sin t \cos t}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{5 / 2}}
\end{aligned}
$$

So the critical points of the curvature function occur when $\frac{d \kappa}{d t}=0$, or in other words, when $\sin t \cos t=0$, which can only happen (since $0 \leq t \leq 2 \pi$) at the times

$$
\begin{equation*}
t=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi \tag{7}
\end{equation*}
$$

The values of the curvature at these times are

$$
\begin{aligned}
t & =0 & \kappa(0) & =\frac{a b}{b^{3}}
\end{aligned}=\frac{a}{b^{2}}, ~ \begin{aligned}
& \kappa(\pi / 2)
\end{aligned}=\frac{a b}{a^{3}}=\frac{b}{a^{2}}
$$

Now we need to determine which is bigger, $\frac{a}{b^{2}}$ or $\frac{b}{a^{2}}$. Notice that if

$$
\begin{equation*}
\frac{a}{b^{2}}<? \frac{b}{a^{2}} \tag{8}
\end{equation*}
$$

Then multiplying both sides of the inequality by $a^{2} b^{2}$ we would find that

$$
\begin{equation*}
a^{3}<^{?} b^{3} \tag{9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
a<? b \tag{10}
\end{equation*}
$$

However, by assumption $a>b$, so in fact the reverse inequality must true. In other words, we have that

$$
\begin{equation*}
\frac{a}{b^{2}}>\frac{b}{a^{2}} \tag{11}
\end{equation*}
$$

Hence the maximum of the curvature occurs at times

$$
\begin{equation*}
t_{\max }=0, \pi, 2 \pi \tag{12}
\end{equation*}
$$

Notice that at these times the location of the particle is

$$
\left\{\begin{array}{l}
\mathbf{r}(0)=(a, 0,0) \tag{13}\\
\mathbf{r}(\pi)=(-a, 0,0) \\
\mathbf{r}(2 \pi)=(a, 0,0)
\end{array}\right.
$$

In other words, the curvature is the greatest at the points of the ellipse which are further away from the origin.

Problem 2. [this problem will not be evaluated on the exam, only on the written homework © $]$

Notice that the graph of a function $y=f(x)$ can be considered as a curve on the $x y$ plane

$$
\begin{equation*}
\mathbf{r}(x)=(x, f(x)) \tag{14}
\end{equation*}
$$

Show that the curvature of this curve is always

$$
\begin{equation*}
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}} \tag{15}
\end{equation*}
$$

We use the same formula as in the previous problem.

$$
\begin{equation*}
\kappa(t)=\frac{1}{v^{3}}|\mathbf{v}(t) \times \mathbf{a}(t)| \tag{16}
\end{equation*}
$$

where we think of using t as the parameter x. In other words, for psychological convenience we write

$$
\begin{equation*}
\mathbf{r}(t)=(t, f(t)) \tag{17}
\end{equation*}
$$

So we need to compute first the velocity, acceleration and speed

$$
\begin{gather*}
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=\left(1, f^{\prime}(t)\right) \tag{18}\\
\mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=\left(0, f^{\prime \prime}(t)\right) \tag{19}\\
v=\|\mathbf{v}(t)\|=\sqrt{1+\left(f^{\prime}(t)\right)^{2}} \tag{20}
\end{gather*}
$$

Therefore

$$
\begin{aligned}
& \mathbf{v}(t) \times \mathbf{a}(t) \\
= & \left(1, f^{\prime}(t), 0\right) \times\left(0, f^{\prime \prime}(t), 0\right) \\
= & \operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & f^{\prime}(t) & 0 \\
0 & f^{\prime \prime}(t) & 0
\end{array}\right) \\
= & \left(0,0, f^{\prime \prime}(t)\right)
\end{aligned}
$$

This vector has norm

$$
\begin{equation*}
|\mathbf{v}(t) \times \mathbf{a}(t)|=\sqrt{0^{2}+0^{2}+\left(f^{\prime \prime}(t)\right)^{2}}=\left|f^{\prime \prime}(t)\right| \tag{21}
\end{equation*}
$$

Therefore, the curvature is

$$
\begin{equation*}
\kappa(t)=\frac{\left|f^{\prime \prime}(t)\right|}{\left(\sqrt{1+\left(f^{\prime}(t)\right)^{2}}\right)^{3}} \tag{22}
\end{equation*}
$$

Replacing t with x, we obtain the formula the problem asked us to find.
Problem 3. [this problem will not be evaluated on the exam, only on the written homework ©]

Compute the curvature κ for the twisted cubic

$$
\begin{equation*}
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} \tag{23}
\end{equation*}
$$

We use the same formula as in the previous problem.

$$
\begin{equation*}
\kappa(t)=\frac{1}{v^{3}}|\mathbf{v}(t) \times \mathbf{a}(t)| \tag{24}
\end{equation*}
$$

So we need to compute first the velocity, acceleration and speed

$$
\begin{gather*}
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=\left(1,2 t, 3 t^{2}\right) \tag{25}\\
\mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=(0,2,6 t) \tag{26}\\
v=\|\mathbf{v}(t)\|=\sqrt{1+(2 t)^{2}+\left(3 t^{2}\right)^{2}}=\sqrt{1+4 t^{2}+9 t^{4}} \tag{27}
\end{gather*}
$$

Therefore

$$
\begin{aligned}
& \mathbf{v}(t) \times \mathbf{a}(t) \\
= & \left(1,2 t, 3 t^{2}\right) \times(0,2,6 t) \\
= & \operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 t & 3 t^{2} \\
0 & 2 & 6 t
\end{array}\right) \\
= & \left(12 t^{2}-6 t^{2},-6 t, 2\right) \\
= & \left(6 t^{2},-6 t, 2\right)
\end{aligned}
$$

This vector has norm

$$
\begin{equation*}
|\mathbf{v}(t) \times \mathbf{a}(t)|=\sqrt{36 t^{4}+36 t^{2}+4} \tag{28}
\end{equation*}
$$

Therefore, the curvature is

$$
\begin{equation*}
\kappa(t)=\frac{\sqrt{36 t^{4}+36 t^{2}+4}}{\left(\sqrt{1+4 t^{2}+9 t^{4}}\right)^{3}} \tag{29}
\end{equation*}
$$

Replacing t with x, we obtain the formula the problem asked us to find.
Problem 4. Let $\mathbf{r}(t)$ represent the trajectory of a curve. Show that at a local maximum or minimum of $f(t)=\|\mathbf{r}(t)\|$, we have that $\mathbf{r}(t)$ is perpendicular to $\frac{d}{d t} \mathbf{r}(t)$. [Hint: check part a) of Problem 1].

At a local maximum or minimum we should have $f^{\prime}(t)=0$, in other words

$$
\begin{equation*}
\frac{d}{d t}\|\mathbf{r}(t)\|=0 \tag{30}
\end{equation*}
$$

From part a) of Problem 1 we know that

$$
\begin{equation*}
\frac{d}{d t}\|\mathbf{r}\|=\frac{1}{\|\mathbf{r}\|} \mathbf{r} \cdot \frac{d \mathbf{r}}{d t} \tag{31}
\end{equation*}
$$

so we can conclude that

$$
\begin{equation*}
\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}=0 \tag{32}
\end{equation*}
$$

at any time t which corresponds to a critical point of $f(t)$.

